Lecture 21
MVC

- **Model**
 - Encapsulates application state
 - Responds to state queries
 - Exposes application functionality
 - Notifies views of changes

- **View**
 - Renders the models
 - Requests updates from models
 - Sends user gestures to controller
 - Allows controller to select view

- **Controller**
 - Defines application behavior
 - Maps user actions to model updates
 - Selects view for response
 - One for each functionality

State Query

View Selection

User Gestures

Method Invocations

Events
State Diagram

• Controller can be modeled as a state diagram.

• States
 – Think of “state of the world”
 – Characterized by “how things are”
 • Because this is a “model”, we just want to know about how things that matter are.
 – Define a specific state by a set of assertions
 • Truth statements about the program
States Graphically

- canvas 1 picture here
State Transitions

• Something must trigger a change in state.
 – Intuitively: if nothing happens, then the state of the world remains the same.

• State diagram must account for each possible state changing interaction.
 – Given the state you are in, must identify all possible events that cause a change in state.
 • Identify any actions and or side-effects associated with the event.
 – In MVC parlance: interactions with model and view.
 • Identify the new state.
 – Can be the same as the old state.
State Transitions Graphically

• canvas 2 picture here
Diagram Notes

• In interest of making diagram easier to read:
 – May hide assertion description and just use state name to label states.
 – May hide actions and side-effect descriptions and just use event name to label state transitions.
What Makes Two States Different

• Either of following conditions
 – Assertions associated with the two states are different.
 – Effect of possible events are different
 • In other words, state transitions are different
 • In our calculator example: if effect of pushing a button is not the same, then must be in a different state.
State Diagram Completeness

• A complete state diagram is *complete* if every transition from every state is accounted for.
 – Think of it as a game to account for every possible sequence in the fewest states.
Calculator Initial State

• What’s the calculator’s initial state?
 – What assertions can we make about the view and model of the calculator.
 • Init only canvas
Other States

• States Only Canvas
State Transitions

• From our initial state, what events might occur?
 – Press a button
 • 0-9, +/-, decimal point, C, CE, operation (+,-,*,/)

• What are the effects of these buttons?
 – 0, +/-, C, CE, =
 • Does nothing. All the assertions remain true and effect of all buttons remains the same.
 – 1-9
 • Display changed to match digit.
 • Effect of other buttons changes (e.g., 0)
 – +,-,*,/
 • Operation is known
 – .
 • Display changes to “0.”
 • Effect of other buttons changes (e.g., 0 and .)

• Init Canvas
Are we complete?

• No
• Have to account for all events possible for all states.
• Go through rest of states.
Calculator v2

- Code controller to match state diagram.
- Compare to first version of code.